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ABSTRACT 

Technologies that facilitate the design and control of 
complex, hybrid, and resource-constrained systems are 
examined. This paper focuses on design 
methodologies, and system architectures, not on specific 
control methods that may be applied to life support 
subsystems. Honeywell and Boeing have estimated that 
60-80Y0 of the effort in developing complex control 
systems is software development, and only 20-40% is 
control system development [l]. It has also been shown 
that large software projects have failure rates of as high 
as 50-65% [2 ,3 ] .  Concepts discussed include the 
Unified Modeling Language (UML) and design patterns 
with the goal of creating a self-improving, self- 
documenting system design process. 

Successful architectures for control must not only 
facilitate hardware to software integration, but must also 
reconcile continuously changing software with much less 
frequently changing hardware (41. These architectures 
rely on software modules or components to facilitate 
change. Architecting such systems for change 
leverages the interfaces between these modules or 
components. 

INTRODUCTION 

Life support systems are difficult to control at best. They 
are by nature complex, hybrid systems. Controlling the 
life support systems is not a simple task. Previous 
systems tests have been successful in only carefully 
monitored and controlled environments, very different 
from the conditions likely to be encountered during an 
actual space mission. 

The computer data acquisition and control systems 
enabling future human exploration of space must 
support multiple missions and, therefore, support the 

evolution of both hardware and software technologies. A 
modular or component-based architecture for these 
control systems is indicated. Using a modular design to 
construct a control system doesn’t make it adaptable, 
extensible or scalable, however. These factors m-ust be 
designed in. An effective design process is critical to 
successfully designing and evolving such software 
systems. 

Two design process techniques are discussed: design 
patterns and the Unified Modeling Language (UML). 
Design patterns capture and transfer knowledge specific 
to a particular problem area. Knowledge is captured in 
the form of templates that have been demonstrated 
successful to document and store this knowledge for 
new designers and programmers. The UML is a 
language to specify, construct, visualize, and document 
the components, their interactions, and how they are 
integrated. 

Component-based development differs from object- 
oriented development in that a separate component and 
interface specification is developed. This means that 
intercomponent dependencies can be restricted to 
individual interfaces, rather than the whole component 
specification. The impact of change is reduced because 
one component may replace another as long as the 
specification includes the same interfaces. 

A component may involve several interfaces; for 
example, a controller for an air processor subsystem 
could have a component that has interfaces with a 
sensor network, a database, and a human interface. 
New components are built to existing interfaces, with 
new functionality using existing interfaces or providing 
new ones. Component-based systems are an effective 
way to fast track the integration of research product into 
existing test or flight systems. 
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DESIGN PATTERNS 

Experts tend to remember past models and designs, and 
often solve problems by reusing old solutions in the new 
context. In mature engineering disciplines, systems are 
commonly developed from these past models, 
experiences and designs. Software engineering is now 
to adopting architectural level patterns for code reuse. 
Key is the adoption of models that capture the design 
knowledge, facilitating early analysis of system 
properties. One way to capture this knowledge is the 
development and use of design patterns. 

Design patterns originated with the work of building 
architect Christopher Alexander. Alexander refers to 
something he called “the quality without a name”, which 
he describes as: 

“To define this quality ... we must begin by 
understanding that every place is given its 
character by certain patterns of events that keep 
on happening there ... each building and each 
town is ultimately made out of these patterns ... 
and of nothing else. ... The more living patterns 
there are in a place . . . the more. it comes to life as 
an entirety, the more it glows, the more it has that 
self-maintaining fire which is the quality without a 
name. ” [5]  

Patterns do not make hard problems simple to solve. 
Patterns help people understand complex problems. 
They free people from repeatedly solving the easy 
problems. Patterns capture existing knowledge, allowing 
new solutions to be built on existing solutions. 

Patterns are recorded in a format called the Alexandrian 
Form. A pattern is both a thing and instructions for 
making the thing. The form is particularly useful way to 
express patterns. The form looks like this: 

The pattern name: A name by which the pattern is 
called. 
The problem the pattern is trying to solve: This way 
people know when to apply the pattern to the 
problem they have. 
Context: A pattern may solve a problem in a 
particular context, but not make sense elsewhere. 
Forces or tradeoffs: Not all problems are clear. 
Forces clarify problem intricacies. Good patterns 
resolve one or more forces. 
Solution: Describes the structure, behavior, etc. of 
the solution, often detailing how to solve the 
problem. 
Examples are present in all good patterns. 
Force resolution or resulting context a good pattern 
describes what it leaves unresolved or what other 
patterns must be applied. 
Design rationale: This describes where the pattern 
came from, why it works, and why it is used. 

Figure 1. An example design pattern. 

Design patterns have been applied to fault-tolerant 
telecommunication systems. Two unique characteristics 
of telecommunications software that coincide with 
Advanced Life Support control software are reliability 
and human factors, making them good candidate 
patterns for further investigation. One of these patterns 
is presented as an example in Figure 1, above. [6] 

Patterns are not, however, a silver bullet. Most patterns 
affect software design, with no quantifiable effect on 
lines of code. Patterns capture existing, well-proven 
design experience. Patterns should look familiar, 
especially to senior programmers and designers. A 
written pattern gives a non-expert designer, someone 

’ f o o l  Me Once IS a pattern which llrntts the ablllty of an appllcatlon to 
cause a system restart to a single occurrence 



new to the control of ALS systems, some reusable 
building blocks for software development. Patterns 
capture the most important information that must be 
passed on to the next generation of designers and 
programmers. 

THE UNIFIED MODELING LANGUAGE 

The Unified Modeling Language (UML) is the industry 
standard for modeling and documenting object-oriented 
systems. It describes a standard set of notations and 
diagrams that describe object-oriented systems and it 
describes what those symbols mean. The UML is a 
process by which a designer (e.g. a controls system 
developer) and a customer (e.g. a life support system PI) 
can reach mutual understanding of how a subsystem is 
designed to operate, nominally, off-nominally and failure 
modes. Application of the UML to a control system 
design problem begins a dialog between software and 
hardware designers, the result of which peels back the 
layers of knowledge the hardware designer possesses, 
and allows that knowledge to be documented in a clear, 
concise manner which control systems programmer and 
designers can understand and translate into effective 
code. 

Using the UML to develop of a control system produces 
several artifacts. These artifacts describe how the 
control system operates, how humans and other parts of 
the systems interact with control system, how the 
system’s various components interact, and what 
components are required. These artifacts are called, 
respectively, the Concept Model, Use Case Models, 
Component Specification, and the Components. 
Artifacts are developed iteratively, as shown in figure 2, 
below. 

Creation of the specification artifacts is tricky since 
various artifacts have clear dependencies. Workflow 
tasks can be summarized into three stages: component 
identification, component interaction, and component 
specification. In all of the stages, component refers to 
both the component and its interface(s). Figure 3, right, 
shows the process, interactions, product inputs and 
artifact outputs. The process is iterative: each of the 
processes shown is executed concurrently. 
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Figure 2. UML artifact development is an iterative 
process. 
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Figure 3. Workflow diagram for developing 
component-based control systems. 

COMPONENT IDENTIFICATION - The component 
identification stage takes as input the control system 
conceptual model and use case models. The goal of 
this part of the process is to identify the initial 
components and set of interfaces for the control system. 
Together with design patterns and existing assets, (e.9. 
communication standards, databases, hardware, etc.) 
these are then used to construct the initial control 
system. The initial cut at the components can be very 
broad at this point. They will be refined as the process 
continues and iterates. The operations that the control 
system must perform should be identified a? this point, 
which defines the initial interfaces the system will 
require. 

COMPONENT INTERACTION - The component 
interaction stage uses interaction models to discover 
control system operation. As more interactions are 
considered, common operational modes and usage 
patterns will emerge. Operations can be moved from 
one component to another, clarifying the interface 
responsibility. The goal here is to minimize the 
dependencies between component objects. Details of 
the control system structure emerge during this process, 
with a clear understanding of the interaction between 
components. 

COMPONENT SPECIFICATION - The final stage is 
component specification. At this point, detailed 
operations and constraints are defined. What conditions 
must be exist prior to and after each component 



operation are defined. This helps determine missing 
parameters, missing information, wrong assumptions, 
etc. 

UML MODELING TECHNIQUES - The UML utilizes 
several notations to diagram the artifacts that it 
produces, The UML uses the term model to refer to 
specific types of diagrams that represent specific system 
abstractions. These diagrams represent concepts of 
how information flows though a system, how users 
interact with the system, and how components interact 
with each other. There are three basic types of 
diagrams for modeling component-based control 
systems using the UML: use-case diagrams, class 
diagrams and collaboration diagrams. 

CONCEPT MODEL - The control system conceptual 
model is not a model of software, but rather a model of 
the information that exists in the problem domain, Le. a 
model of the process by which a life support system 
operates. The purpose of the conceptual model is to 
capture concepts and define relationships. These 
concepts and relationships are then used to define the 
components necessary to adequately and completely 
control the system in any state. 

CLASS DIAGRAMS - Class diagrams describe the 
static structure of a system. Classes are depicted as 
rectangles divided into compartments for name, 
attributes, and operations. The relationship between 
classes is shown using associations and cardinality. 
Associations are lines from class rectangle to class 
rectangle that show there is a static relationship between 
the two classes. Cardinality is a notation that shows 
multiplicity between cases. For example, figure 4 shows 
a class that represents the information that might be 
contained in a database of process control data. 
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Figure 4. Example class diagram. 

USE CASE DIAGRAMS - Use case diagrams model 
how the user interacts with the system. The participants 
in a use case are actors and the system. An actor is an 
entity that interacts with the system, typically a user. An 
actor can be another system, but, if it is, the details of 
that system are hidden - we simply see a predictable 
“person”. One actor is always defined as the initiator. 
The other actors (if any) are used by the system to meet 
the initiator’s goal. In a use case, the actors interact with 
the system as a whole, not some part of it. It is also 
important to note that the method the actor uses to 
communicate with the system is of no concern, whether 
it is a graphic user interface, an Internet connection, or a 
control panel button. 

It should also be pointed out that the purpose of the use 
case is to meet the immediate goal of the actor. This 
leads to a commonly occurring problem with use case 
diagrams: scope and size. There is no consensus on 
the issue; however, a first approximation is to make the 
use case smaller than the conceptual model process but 
larger than a single component operation. The purpose 
of the use case is to meet the immediate goal of the 
actor, be it changing a control set point or checking 
material stores. It will include everything that can be 
done now by the system to meet the goal. 

COLLABORATION DIAGRAMS - The rectangles in 
these diagrams represent component objects that 
support the interfaces that are shown. Since it is 
possible (even likely) for components to support more 
than one interface, there may be two or more rectangle 
for some components. The links are instances of the 
interfaces shown unless they are transient: existing only 
as long as the collaboration between the two 
components occurs. 

ARCHITECTURES 

The control system architecture is the principal means 
by which change to a system is effected. Modern control 
system architectures are made up of networked sensors, 
actuators and software components, at various levels, 
which, together, effect change in that system. 
Regardless of complexity, the basic system consists of a 
sensed value, an algorithm for determining sensed value 
goodness, and an actuator for changing the system state 
based on that measure of goodness. 

Control system architectures are typically hierarchical or 
heterarchical. Hierarchical systems are characterized by 
a controller that is located at the top of a hierarchy of 
sensors, actuators and passive algorithms. Sensor input 
data flows up the hierarchy to the controller, which 
issues commands that flow down to the actuators. A 
network of sensors and actuators that cooperate to 
achieve system wide goals characterizes heterarchical 
systems. 
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Control system software for advanced life support is 
distributed across the processors and subsystems that 
comprise the system. Currently, the developer of each 
physico-chemical or biological processor is responsible 
for developing the software needed to run her 
equipment. In the near future, this process will have to 
change. To give a control system the highest degree of 
flexibility with which to succeed, it needs to have access 
to all the sensed inputs and actuators that are available 
to it. The control system software needs to be able to 
detect a condition by reaching down, into a hardware 
designer’s equipment, diagnose that condition, and then 
reach down again, possibly into another designer’s 
equipment, and effect the change necessary to correct 
the situation. The process by which equipment is 
supplied to NASA today does not allow this to occur. 

The ability to change and evolve must be designed into 
the software we use to control the life support hardware. 
Faili,ng that, there must be a cohesive, effective way to 
encapsulate these subsystem controllers, allowing 
access to their data and actuators until there is such a 
standard interface. 

_COMPONENT-BASED 

Component-based control systems utilize interactive 
software abstractions called components. These 
abstractions possess three attributes: stored knowledge 
or data, the ability to process knowledge or function, and 
the means to share knowledge or interfaces. By 
judiciously determining the interfaces which components 
share, component dependencies are created. These 
dependencies determine to a large extent the type and 
number of components required by the system. 
Definition of a common interface and building to that 
interface allows future work to increase functionality, 
while maintaining backwards compatibility. Components 
can be extended to include additional functionality as 
long as the interface’s original functionality is left intact. 
Components are the basic building blocks of modern, 
extensible, evolvable control systems. 

RECONFIGURABLE 

A reconfigurable control system is a component-base 
control system where the components can be changed 
in real-time. For example, a model-based controller with 
a relatively large time step is controlling a water 
processor. The large time step is used to reduce 
computer overhead in situations where the model 
predictive accuracy is not that critical. However, if 
sensors indicate, a more accurate (and more computer 
intensive) model could be substituted on the fly, 
adjusting is a more controlled manner the trajectory of 
the water processor. 

technologies as well as proven alternatives into the 
control mix. Imagine a system that is disparate, 
comprised of scattered processors, simulations and 
controllers. Imagine that this conglomeration of 
hardware and software shares a common set of 
interfaces and that components of the system can be 
switched in and out at will. The system can be 
configured to run a ground-based simulation of an 
advanced life support mission or the system could be the 
mission itself, with ground expertise, simulations and 
alternate control strategies to the spaceflight hardware. 

CONCEPTS 

It is likely that future spaceflight hardware and software 
will utilize separate spiral development cycles. This will 
inevitably lead to a circle-spiral process model, with 
stable systems being represented by circles, and 
iterative development proceeding along spiral paths 
approaching those circles. The stable configurations 
can be software release levels, architectural frameworks, 
or hardware configurations. One problem with designing 
a process for integration is doing the hard part first. The 
evolutionary nature of software implies that, given this 
heuristic, the hard parts of the software should be 
designed first. Given what is know about schedule risks 
and software, this may seem obvious to the casual 
observer, but it is often difficult glven pressures to 
produce interface demonstrations and so forth. Reliable 
control of advanced life support processes, therefore, 
needs to be effectively demonstrated prior to creation of 
sharp looking interfaces. Given that a reliable control 
demonstration is the first order of business, suitable 
hardware or a hardware analog must be available for 
control system software to succeed. 

Two mechanisms for management of change are to 
implement improvements in the form of large portions of 
the system, so-called large lump development, or to 
implement smaller, continuous growth, or so-called 
piecemeal growth. Large lump development is relatively 
static, with change often occurring in leaps based on 
external influences to the system. Piecemeal growth is 
more dynamic, typically in response to internal system 
influences. Both mechanisms have a place in control 
systems design. Implementation of new technologies 
that fundamentally change the way a control system 
operates is an example of large lump development. 
Whereas piecemeal growth may be as simple as 
developing a replacement component that utilizes a new 
network interface or service. 

Management of change is the most important priority to 
any long-term software project. Successfully managing 
change reduces risk of project schedule slip or failure. It 
also quantifies schedule progress, allowing accurate 
assessment of effort required. 

The ability to reconfigure a control system in real-time 
provides a valuable tool for integrating new control 



CONCLUSIONS CONTACT 

In 2001, an estimate was made of the size of the facility 
control system for a human-rated test bed call the BIO- 
Plex. The estimate was based on the assumptions that 
a component-based control system would be used and 
that no “high-level” or autonomous control was part of 
the facility control system. The estimate was on the 
order of 10,000 function points. Projects of this size 
have failure rates on the order of 50 percent. 

Since that estimate was made, the test facility has grown 
in scope, to include more diverse elements such as 
human factors, food processing, and advanced 
environmental monitoring and control. The probability of 
success for the control system software design and 
implementation has not decreased, however. 

Only by successfully managing the design for change 
will these efforts succeed. So we stand at a crossroads: 
do we design using the technology of today, the same 
technology that brought us to the moon before, or do we 
incorporate new discoveries, new technologies as they 
are proven and made available? The choice is ours to 
make. Where one path supports a human presence in 
space, the other will leave only leave footprints. 
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